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Abstract GRACE satellite data are widely used to estimate groundwater storage (GWS) changes in
aquifers globally; however, comparisons with GW monitoring and modeling data are limited. Here
we compared GWS changes from GRACE over 15 yr (2002–2017) in 14 major U.S. aquifers with
groundwater‐level (GWL) monitoring data in ~23,000 wells and with regional and global hydrologic and
land surface models. Results show declining GWS trends from GRACE data in the six southwestern
and south‐central U.S. aquifers, totaling −90 km3 over 15 yr, related to long‐term (5–15 yr) droughts, and
exceeding Lake Mead volume by ~2.5×. GWS trends in most remaining aquifers were stable or slightly
rising. GRACE‐derived GWS changes agree with GWL monitoring data in most aquifers (correlation
coefficients, R = 0.52–0.95), showing that GRACE satellites capture groundwater (GW) dynamics. Regional
GW models (eight models) generally show similar or greater GWS trends than those from GRACE.
Large discrepancies in the Mississippi Embayment aquifer, with modeled GWS decline approximately four
times that of GRACE, may reflect uncertainties in model storage parameters, stream capture, pumpage,
and/or recharge rates. Global hydrologic models (2003–2014), which include GW pumping, generally
overestimate GRACE GWS depletion (total: approximately −172 to −186 km3) in heavily exploited aquifers
in southwestern and south‐central U.S. by ~2.4× (GRACE: −74 km3), underscoring needed modeling
improvements relative to anthropogenic impacts. Global land surface models tend to track GRACE GWS
dynamics better than global hydrologic models. Intercomparing remote sensing, monitoring, and modeling
data underscores the importance of considering all data sources to constrain GWS uncertainties.

Plain Language Summary The major U.S. aquifers provide an ideal system to assess GRACE
(Gravity Recovery and Climate Experiment) satellite data. We compared GRACE groundwater storage
anomalies (GWSAs) with groundwater level anomalies (GWLAs) from ~23,000 wells and with groundwater
storage (GWS) from regional and global models in 14 major U.S. aquifers. Results show large GWS
declines from GRACE in southwestern (Central Valley and Arizona Alluvial Basins) and south‐central
(Central and Southern High Plains and Texas) aquifers frommultiyear droughts (5–15 yr). In contrast, GWS
trends in aquifers throughout the rest of the U.S. showed mostly stable or rising values. Time series of
GRACE GWSAs compared favorably with GWLAs from most aquifers, suggesting that GRACE data track
groundwater (GW) dynamics. Regional GW models show similar or greater declines in GWS compared
with GRACE data, with the largest discrepancy of a factor of four times greater modeled depletion in the
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Mississippi Embayment. Global hydrologic models show minimal storage dynamics but greatly
overestimated GWS declines by ~2.4× in southwestern and south‐central aquifers with intensive irrigation
compared with GRACE data. In contrast, global land surface models show similar GW dynamics to
GRACE data but underestimated GWS declines in heavily exploited aquifers because these land surface
models do not include human intervention.

1. Introduction

There is increasing interest in groundwater storage (GWS) changes because of concerns about overexploita-
tion and depletion in many aquifers globally (e.g., U.S. Central Valley, U.S. High Plains, northwest India,
North China Plain) (Arciniega‐Esparza et al., 2017; Brena‐Naranjo et al., 2014; Long et al., 2016;
Longuevergne et al., 2010; Scanlon et al., 2012; Wei et al., 2017). Traditional hydrologic approaches to asses-
sing GWS changes have relied on groundwater level (GWL) monitoring and regional groundwater (GW)
modeling (Konikow, 2013; McGuire, 2017). In the United States, large numbers of wells are monitored
annually (e.g., ~7,500 wells in the High Plains aquifer; McGuire, 2017), and ~1,700 wells are monitored con-
tinuously in the United States (https://waterdata.usgs.gov/). Scaling up point GWL data to develop
composite estimates of GWL variations over an aquifer is complicated because some wells may reflect
impacts of local GW pumping and declustering data may be difficult. Converting GWLs or heads to GWS
(units of length or volume/unit area) requires information on aquifer storage coefficients (SC, unitless):

ΔGWS ¼ ScΔGWLs; (1)

where Δ is change relative to the long‐term mean. However, storage coefficients can vary over several
orders of magnitude from unconfined aquifers (e.g., specific yield, ~0.02–0.3) to confined aquifers (e.g.,
storativity, ~0.0001–0.001) (Freeze & Cherry, 1979). However, there is a continuum between unconfined
to confined conditions with some aquifers predominantly semiconfined, such as the California Central
Valley. In systems with vertically stacked aquifers, it is often difficult to determine whether wells are
screened in unconfined or confined aquifers, or both, increasing uncertainty in GWS estimates from
GWL data.

Regional GWmodels have been developed for many of the major U.S. aquifers by the U.S. Geological Survey
(USGS) and other agencies (Deeds & Jigmond, 2015; Faunt, 2009; Peterson et al., 2016, 2020). These models
are data intensive and use reported or estimated pumpage (Dieter et al., 2018). Some of these models rely
primarily on GWL data for calibration, which can result in nonunique solutions for fluxes and storage
(Hill & Tiedeman, 2007). Integration of additional information, such as base flow to streams and chemical
tracers, better constrains model parameters and predictions. GWS information could similarly be leveraged
to improve model calibration and GW predictability, but little emphasis has been placed on GWS in the past
because of lack of independent GWS data at regional scales until the advent of the Gravity Recovery and
Climate Experiment (GRACE) satellites in 2002.

Limited availability of ground‐based monitoring and regional modeling in many areas, particularly in devel-
oping countries, has resulted in increasing interest in using global models and remote sensing to assess
changes in GWS. Two basic types of global models exist: (1) global hydrologic models (GHMs) and (2) global
land surface models (LSMs). GHMs were originally developed to evaluate water scarcity; they are based on
water balance and most do not include energy balance. These models generally include all component
storages (surface water, SW; soil moisture, SM; and GW) and human intervention (HI; water abstraction,
return flow from SW or GW abstraction, and reservoir storage). GHMs have been used to identify hot spots
of GW depletion in different regions (North China Plain, NW India, Tigris‐Euphrates Basin, etc.)
(Döll et al., 2016; Wada et al., 2010). In contrast, LSMs were developed to model the lower boundary condi-
tion for climate models and include water and energy conservation equations. Most LSMs do not include HI
and generally limit storage to snow and SM.

GRACE satellites have been widely used to monitor changes in total water storage (TWS) globally since the
original satellites were launched in 2002 (Tapley et al., 2004). Monitoring the distance between the two
GRACE satellites provides data on spatiotemporal variability in the Earth's gravity field that is controlled
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primarily by variations in water storage caused by many processes, such as floods, droughts, ice melting, and
GW pumping (Rodell et al., 2018). Global scale analyses have been used to assess impacts of terrestrial TWS
changes on sea level rise (Reager et al., 2016). GRACE TWS changes are represented as anomalies (TWSAs)
relative to the long‐termmean. TWSAs are vertically integrated from the land surface to the deep subsurface
at scales ≥ ~100,000 km2. TWSAs include the following component storages:

TWSA ¼ SnWSAþ SWSAþ SMSAþGWSA; (2)

where the ending SA refers to storage anomalies and SnW is snow water. Therefore, to estimate GWSAs,
all other component storages must be subtracted from TWSAs. SnWS and SMS are generally estimated
from models (e.g., snow from Snow Data Assimilation System [SNODAS], SM from LSMs), and SW is
estimated from reservoir‐monitoring data. In some regions, there is considerable uncertainty in the
relative contribution of different storage components to TWSAs. For example, in various studies of the
Tigris‐Euphrates Basin, GRACE TWS changes have been attributed to different components, including
GW irrigation pumpage (Voss et al., 2013), surface reservoirs (Longuevergne et al., 2013), and natural
GWS and reservoir storage (Mulder et al., 2014). Similarly, different studies in the U.S. Colorado River
Basin have attributed GRACE TWS changes to GW pumping (Castle et al., 2016) or to SW storage, SM sto-
rage, and mostly natural GWS changes in response to droughts (Scanlon et al., 2015).

None of the previous studies integrated GWS estimates from combined data on GWL monitoring, regional
and global modeling, and GRACE data. Such integration should help assess the reliability of different
approaches for estimating GWS trends and test these various methods. The objective of this study was to
attempt to fill this gap in previous studies by addressing the following questions:

1. How much do estimates of GWSAs contribute to TWSAs from GRACE?
2. How well do GRACE GWSAs compare with GWSAs from GWL monitoring data?
3. How do GRACE GWSAs compare with GWSAs from regional and global models?

The major components of the study are shown in a flow chart (Figure 1). The major U.S. aquifers provide an
excellent field laboratory to address these objectives because of the intensive monitoring over thousands of
wells that cover the GRACE period and regional modeling of many of the aquifers (Konikow, 2013). This
study builds on previous studies that compared GRACE GWSAs with GWL data in individual aquifers, such
as the Central Valley (Scanlon et al., 2012) and the High Plains (Brena‐Naranjo et al., 2014; Brookfield
et al., 2018; Longuevergne et al., 2010; Seyoum & Milewski, 2016; Strassberg et al., 2009) by expanding the
analysis to compare with GWL data in most of the major U.S. aquifers. More detailed comparisons of
GRACE GWSAs with GWSAs from regional models were also conducted, leveraging the results of pre-
viously published individual aquifer studies (Argus et al., 2017; Xiao et al., 2017). We also expanded beyond
evaluation of long‐term trends to include an analysis of interannual variability in GWS. Particular attention
was given to estimating uncertainties in GRACE GWSAs from uncertainties in component storages. The pri-
mary foci of the work are (i) to advance interpretation of GRACE data by combining it with GWLmonitoring
data and (ii) to evaluate the use of GRACE data as an independent constraint on GWS estimates from regio-
nal and global modeling.

2. Materials and Methods
2.1. Major Aquifers

We selected 14major aquifers within the United States for the analysis (Miller, 1999). These aquifers are gen-
erally intensively monitored, and regional models have been developed and are available for eight of the 14
aquifers (Figures 2 and 3). Some of these aquifers are also notable because they are hot spots of GW depletion
(e.g., Central Valley, High Plains, Mississippi Embayment) (Konikow, 2013). These aquifers represent a vari-
ety of aquifer types, including varying aquifer material: unconsolidated alluvial deposits (Central Valley,
High Plains, Mississippi River Valley Alluvium, Arizona Alluvial Basins), semiconsolidated sedimentary
aquifers (Coastal Lowlands, Texas Gulf Coast), sandstone and carbonate aquifers (Colorado Plateau,
Edwards Trinity Plateau, Pennsylvanian, and Floridan aquifers), and aquifers of basaltic and volcanic rock
with interbedded alluvium (Columbia Plateau and Eastern Snake Plain) (Miller, 1999). Some aquifers are
used for intensive irrigation (Central Valley, High Plains, and Mississippi Embayment).
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The 14 regional aquifers include a range of unconfined to confined conditions that are important to consider
in evaluating GWL records and comparing with GRACE GWSAs. Predominantly unconfined aquifers
include the Eastern Snake Plain, Edwards Trinity Plateau, and the High Plains (George et al., 2011;
McGuire, 2017; Twining & Fisher, 2012). The remaining aquifers generally include both unconfined and
confined portions with unconfined aquifers laterally adjacent to or underlain by confined aquifers separated
by low‐permeability clay layers. Aquifers in the Central Valley and Arizona Alluvial Basins are generally
considered semiconfined with degree of confinement linked to clay distribution (Faunt, 2009; Pool &
Anderson, 2008). Most of the pumpage (~90%) in the Mississippi Embayment Regional Aquifer System
(MERAS) is in the shallow unconfined alluvial aquifer system (Mississippi River Valley Alluvium) with lim-
ited pumpage in the deeper confined Sparta aquifer (Clark & Freiwald, 2011; Clark et al., 2011). Shallow
parts of the basalt and volcanic aquifers of the Columbia Plateau Regional Aquifer System (CPRAS) include
alluvial unconfined regions of limited extent with the remainder of the system confined (Ely et al., 2014). The
Upper Colorado River Basin includes shallow alluvial aquifers adjacent to rivers and deeper confined aqui-
fers, with very little GW use (Scanlon et al., 2015). The Floridan aquifer system includes the unconfined
Upper Floridan aquifer underlain by the confined Lower Floridan aquifer; however, these aquifers are
highly connected and behave as a single system (Bellino et al., 2018). The Gulf Coast aquifers (Texas Gulf
Coast and Coastal Lowlands) include unconfined and confined aquifers (Kasmarek, 2012).

2.2. Data Sources and Analysis
2.2.1. GRACE Data (TWS Anomalies)
GRACE data are based on GRACE Release 06 solutions (section S2 in the supporting information).
We focused primarily on GRACE mass concentration (mascon) solutions from The University of Texas at
Austin Center for Space Research (CSR, RL06, Version 1; Table S3) and from the NASA Jet Propulsion
Laboratory (JPL, RL06, Version 2; Table S4). Goddard Space Flight Center (GSFC) mascons were omitted
because data after July 2016 were not available. The mascon solutions were selected because they reduce

Figure 1. Flowchart describing the analysis conducted in this study. GRACE GWSA refers to GRACE‐derived GWS
anomaly as shown in the equation where TWSA is GRACE Total Water Storage Anomaly (GRACE solutions from
University of Texas Center for Space Research, CSR; NASA Jet Propulsion Lab., JPL; M = Mascons; SH = spherical
harmonics; GFZ = GeoForschungsZentrum); SnWSA is snow water storage anomaly from Snow Data Assimilation
System; SWSA is surface water storage anomaly (mainly reservoirs); and SMSA is soil moisture storage anomaly from
National Land Data Assimilation System Land Surface Models (NLDAS models: Mosaic, Noah‐2.8, and VIC‐4.03).
GRACE GWSAs were calculated from GRACE TWSAs based on mean of CSR and JPL mascons. The long‐term
variability in GRACE‐GWSAs (trend and interannual variability) were compared with GWSAs from regional models
(CPRAS = Columbia Plateau Regional Aquifer System; E Snake = Eastern Snake Plain Aquifer Model; CVHM = Central
Valley Hydrologic Model; AZ All = Arizona Alluvial Basins; NHP = Northern High Plains; SHP = Southern High
Plains; MERAS = Mississippi Embayment Regional Aquifer System; and HAGM = Houston Area Groundwater Model.
GRACE GWSAs were also compared with composite GWL hydrographs from each aquifer, totaling 23,000 wells
using synoptic data from winter periods. GRACE GWSAs were compared with global hydrologic models
(GHMs: PCR‐GLOBWB‐2.0; WGHM‐2.2d) and land surface models (LSMs: NOAH‐MP, CLM‐5.0, CLSM‐F2.5) that
included a GWS component.
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leakage issues on land and between land and ocean. GRACE data are provided at about monthly intervals as
an equivalent water thickness (in centimeters). Data from April 2002 through June 2017 (~15.25 yr) were
used in this analysis. Missing months were imputed using linear interpolation. The gridded GRACE data
used for this study range from 0.25° for CSR (derived from the 1° native resolution) to 0.5° for JPL
(derived from the 3° native resolution). The Coastline Resolution Improvement was applied to the JPL
data (Wiese et al., 2016). Uncertainties in GRACE TWSA data were based on the standard deviation of
five GRACE solutions (CSR and JPL mascons and CSR, JPL, and GeoForshungsZentrum [GFZ] spherical
harmonic [SH] solutions) (section S2; Table S9). Seasonal Trend decomposition using Loess (STL)
methodology was used to disaggregate TWSA time series and storage components into long‐term
variability (trends + interannual variability) as well as annual and semiannual variability (Cleveland
et al., 1990) (Equation 3; Figure S1; section S6.1). Analysis in this study focused on long‐term variability,
here defined as time series components with frequency ≥13 months (trends + interannual variability).

Monthly GRACE TWSA observations of each aquifer system were extracted from the global data sets by
masking the aquifer boundaries in the GRACE global grid and area‐weighting the GRACE data within
the relevant grid cells. GRACE monitors changes in water storage, which are shown as anomalies relative
to the long‐term mean (2002–2017) in this analysis. TWSA within the aquifers was calculated by

Figure 2. Temporal dynamics of water storage based on variances in temporal components of total water storage (TWS),
groundwater storage (GWS), and soil moisture storage (SMS) (Table S2). The temporal components are based on STL
analysis (section S6.1). The variance of each temporal component (e.g., trend and interannual) was divided by the
variance in the raw time series to estimate the relative contribution of each temporal component to the total
(section S6.3). Temporal components include long‐term trends, inter‐annual variability, and annual and semi‐annual
variability. GRACE TWS is the average of CSR. M and JPL.M.dsf solutions. SMS is the ensemble of the NLDAS
models (MOSAIC, NOAH‐2.8, and VIC‐4.0.3). GWS is the residual of the water budget equation. The y axis refers to the
14 major aquifers: Columbia = Columbia Plateau; Snake = Snake River Basin; SAC = Sacramento; SJ/Tul = San
Joaquin and Tulare; U COL = Upper Colorado; AZ All = Arizona Alluvial Basins; NHP = Northern High Plains;
C + SHP = Central and Southern High Plains; TX ETP = Texas Edwards Trinity Plateau; TX GC = Texas Gulf Coast;
MERAS = Mississippi Embayment Regional Aquifer System; Coast. Low = coastal lowlands; Florida = Floridan; and
Penn = Pennsylvanian aquifers.
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integrating the water volumes of contributing cells. GRACE polygons corresponded to the aquifer extent for
the large regional aquifers, such as the High Plains. However, smaller regional aquifers were evaluated using
GRACE by extending the system boundaries to the surrounding larger river basins (e.g., Sacramento and San
Joaquin/Tulare Basins [155,000 km2], which encompass the Central Valley aquifer [55,000 km2]). A similar
process was applied to the Eastern Snake Plain aquifer (40,700 km2) and surrounding Snake River Basin
adjudication (186,500 km2) and the region comprising the ~70 alluvial basins of the Arizona Alluvial
Basins aquifer system (225,400 km2) and surrounding nonaquifer regions consisting primarily of
crystalline and volcanic rocks (424,350 km2).
2.2.2. SM, Snow, SW, and GWS
GWSAs were estimated from GRACE TWSAs by subtracting SnWSAs, SWSAs, and SMSAs (Equation 2)
(section S2; Table S19). Data on SnWSAs were obtained from SNODAS (estimated uncertainty ±15%;
Tables S15 and S16) (Barrett, 2003; Marton et al., 2015). SWSAs were obtained from ground‐based monitor-
ing of surface reservoirs with storage capacities exceeding ~0.5 km3 from a variety of sources (estimated
uncertainty ±15%) (Tables S17 and S18). SMSAs were derived from LSMs included within the North
American Land Data Assimilation System (NLDAS Version 2: MOSAIC, NOAH‐2.8, and VIC‐4.0.3;
Tables S10–S13) (Xia et al., 2013, 2014). Variability in SMS from other LSMs (CLSM, NOAH‐MP) is similar
to those from NLDAS, but NLDAS was selected because of higher spatial resolution and longer simulated
period (≤2017) for North America relative to other LSMs (≤2014). Uncertainty in SMS was estimated from
the standard deviation of the three NLDAS models (Table S14). Most of these models limit SMS to the upper
2 m with three to four soil layers. Uncertainty in GWSAs was calculated as the square root of the sum of the
squared errors of each storage component (Equation S2.0). Deeper storage below the shallow modeled soil

Figure 3. GWS trends from GRACE in km3 over the 15 yr monitoring period (2002–2017) shown for the 14 major aquifers in the U.S. map (Tables 1 and S1). Time
series plots: (upper panels) long‐term variability (interannual variability and linear trend) in monthly water storage anomalies (WSA) including TWSA
(mean CSR‐M and JPL‐M, black line) and GWSA from GRACE (blue line) (Tables S3–S8). The trend in GWSA is represented by blue dashed line. Uncertainty
in GWSA is shown as the gray bands based on the propagated errors from TWS, snow water storage, surface water storage, and soil moisture storage
(Tables S10–S20). (Lower panels) Annual cumulative precipitation anomaly (CPA) as gray bars (Table S21).
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zone and above the GW should not contribute substantially to GWS uncertainty because long‐term storage
variations in this zone are thought to be low, especially in semiarid regions (Scanlon et al., 2005, 2007). The
contribution of each storage component (long‐term variability) to the sum of the storage components was
calculated from the mean absolute deviation (MAD) of each storage component as a percent of the sum of
the MADs of all storage components (proxy for TWS; Table S2.2).

GWSAs were calculated as the residual of the water budget equation 2 using GRACE TWSAs (mean of CSR
and JPL mascon solutions), SnWS from SNODAS data, SWS from in situ reservoirs, and SMS from NLDAS
models (MOSAIC, NOAH‐2.8, and VIC‐4.0.3) (Table S19). GWSAs accumulate uncertainties in each of the
water budget terms (Table S20).
2.2.3. Groundwater Level Monitoring Data
GRACE‐derived GWSAs were compared with GWSAs from ground‐based GWLmonitoring data. GWL data
were converted to GWS using the reported storage coefficient based on regional modeling (Figure 4;
Table S26.1). GWLAs were also converted to GWSAs using an effective storage coefficient from the relation-
ship between GRACE GWSAs and GWL anomalies (Figure S4; Tables S24 and S26.1).

Storage coefficients are generally high and fairly uniform in unconfined aquifers (Edwards Trinity Plateau,
Eastern Snake Plain, and High Plains, aquifers). However, many of the studied aquifers include unconfined
and confined systems with order of magnitude variability in storage coefficients. In most of these systems we
used different approaches to isolate the shallow, predominantly unconfined portions to compare with
GRACE data, as detailed later in this section. The calculated effective storage coefficients for aquifers

Figure 4. The time series show annual variability in GRACE GWSAs (black line) and annual variability in GWSAs from composite GW level anomalies (GWLAs)
from monitoring data (blue line) based on spring and winter seasons (Table S24). In situ GWSAs were estimated using the storage coefficients from regional
models (Table S26.1). In situ GWSAs were calculated from 10‐km gridding resolution in the 14 major aquifers. The results for the GRACE data for the Snake,
Sacramento, San Joaquin, Arizona Alluvial, and Mississippi Embayment were scaled based on the ratio of the basin area to the aquifer area under the
assumption that storage change is restricted to the aquifers. The different percentages of areas are shown in Table S23.4. The gray bar graphs show annual
cumulative precipitation anomalies (CPA) (Table S21). The U.S. base map is similar to that in Figure 3 showing trends in GRACE GWS in km3 over the 15 yr
monitoring period (2002–2017) (Tables 1 and S1).
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(Table S26.1) were also compared with storage coefficients from regional GWmodels. Some previous studies
that compared GRACE GWSAs to ground‐based data used regional estimates of storage coefficients for the
aquifers (section S3).

The GWL data used in this analysis include water levels from ~22,600 wells and were obtained from a variety
of sources, such as the USGS National Water Information System (NWIS) and the California Statewide
Groundwater Elevation Monitoring (CASGEM) (section S3; Table S23.2). Comparison with GRACE data
focused on GWLs monitored during the winter period (December through May) to lessen the impact of var-
iations in the magnitude and timing of irrigation pumping in many aquifers. GWSAs from GRACE
long‐term trend analysis were also averaged for winter months for comparison with the GWL data
(Table S24).

GWL data were filtered to exclude outliers (i.e., groundwater level anomalies [GWLAs] > 1.5 × interquartile
range) assumed to be impacted by GW pumping. GWL data were gridded at 10, 25, 50, and 100 km resolu-
tions to assess the sensitivity of results to gridding resolution (Table S25.1). Results from the different grid
resolutions were similar, but the 10 km resolution likely best represents spatial variations in GWLs and
was selected for comparison with GRACE data.

It is important to carefully analyze GWL data because small GWL variations in unconfined aquifers would
result in much larger GWS changes than similar GWL variations in confined aquifers because of orders of
magnitude lower storage coefficients in confined aquifers (Equation 1). GWL variations in unconfined aqui-
fers can be analyzed as a single system and should behave similarly (Edwards Trinity Plateau, High Plains,
and Eastern Snake Plain). We limited analysis in the Mississippi Embayment to the shallow unconfined
Mississippi River Valley Alluvium wells and excluded GWLs from the deeper confined Sparta aquifer.
Data on the status of wells in terms of unconfined and confined systems are available for a limited number
of aquifers (Columbia Plateau, Coastal Lowlands, Mississippi Embayment, and Floridan) (section S3;
Table S25.2). Previous studies indicate that unconfined and confined sections of the Floridan aquifer system
are highly connected and behave as a single system (Bellino et al., 2018). For wells with specific unconfined
and confined sections (Columbia Plateau, Texas Gulf Coast, and Coastal Lowlands), we applied an unsuper-
vised machine learning algorithm (k‐mean clustering) to partition wells in these aquifers into k clusters
according to their location, depth, trend, long‐term mean, and standard deviation of GWLs (Lloyd, 1982)
(Table S23.1). Results from the cluster analysis were used to identify unconfined portions of the aquifers
for comparison with GRACEGWSAs. There were insufficient data in the Upper Colorado to apply the k clus-
tering approach. The Central Valley and Arizona Alluvial Basin aquifers behave as semiconfined systems
with the degree of confinement varying with clay content (Faunt, 2009; Faunt & Sneed, 2015), and all well
data were used for comparison with GRACE data.
2.2.4. Regional Groundwater Models
Regional GW models were available for eight of the 14 aquifers and were compared with the GRACE data
over the common time period (Tables S27–S28). The regional models are the CPRAS, Eastern Snake Plain
Aquifer Model (ESPAM), California Central Valley Hydrologic Model (CVHM, Arizona Alluvial Basins
(six models), Northern High Plains (NHP), Southern High Plains, the Houston Area Groundwater Model
(HAGM) including the northern part of the Texas Gulf Coast aquifers (Kasmarek, 2012), and the MERAS.
Many of these models are described in Konikow (2013) with additional details in the supporting information
(section S4; Table S27). The time period for most regional models did not extend over the entire GRACE per-
iod, which limited comparisons for most aquifers. All regional models were developed using the USGS finite
difference GW codeMODFLOW (Harbaugh et al., 2000). Simulated water‐budget information for each stress
period was used to calculate the total GWS change for each regional aquifer through the simulated period.
For one regional aquifer, the Eastern Snake Plain, storage change was not derived directly from the model,
as it includes only a brief period coincident with GRACE. Instead, storage change was estimated based on
the product of specific yield values derived from the calibrated MODFLOWmodel and annual synoptic sur-
veys of winter GWL observations throughout the GRACE period. Most models consist of an early predeve-
lopment (i.e., prior to intensive pumping) steady‐state model followed by a multidecadal transient model.
Models are primarily based on 1 square mile (2.6 km2) or higher resolution grids with annual or shorter
stress periods during the GRACE data period. Model input data generally include initial and transient con-
ditions of recharge, pumpage, evapotranspiration, stream/spring base flow discharge, and state variables
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(hydraulic conductivity and storage coefficient). Model output for each stress period generally includes
GWLs or heads, and GW budgets, including GWS, well withdrawals, and base flow to streams and springs.
Only annual simulated GWS results were compared with GRACE GWSAs. These regional GWmodels were
calibrated using GWL data and, in most cases, GW discharge to streams.
2.2.5. Global Models
Global models evaluated in this study include GHMs: PCRaster‐Global Water Balance (PCR‐GLOBWB)
(Sutanudjaja et al., 2018) and WaterGAP Global Hydrology Model (WGHM) (Mueller‐Schmied et al., 2016).
LSMs were evaluated that simulate GWS (LSMs: CLSM, NOAH‐MP) (section S5) (Ek et al., 2017; Lawrence
et al., 2019). CLM‐5.0 was also included although it does not simulate GW as a separate compartment. The
top 2 m of the CLM‐5.0 profile was assumed to equal SM to make direct comparisons with the other LSMs.
The LSMs, except CLM‐5.0, include SnWS, SMS, and GWS whereas the GHMs include all storage compo-
nents (Equation 2). HI is considered in GHMs, relying on simulated or calculated GW pumpage, but
LSMs do not simulate HI. None of these models were calibrated except WGHM‐2.2d, which was calibrated
to mean annual streamflow. Additional details are given in (section S5; Table S29).
2.2.6. Time Series Decomposition
The time series of storage components can be decomposed using the STL algorithm developed by Cleveland
et al. (1990). The temporal components are as follows:

Sraw ¼ SLong − term þ SAnnual þ SSemi − annual þ resdiual; (3)

where Sraw is the original storage data, long‐term (trends + interannual) and annual, semiannual, and
residual components. More details are provided in section S6.1.
2.2.7. Component Storage Contributions to TWS
The component storage contributions relative to sum of the storage components in each aquifer was calcu-
lated as the percentage of the MAD of long term storage (trend + interannual variability) relative to the
MAD of all other components (Kim et al., 2009) as

SIi ¼ MAD Sið Þ
∑n

i MAD
; MAD ¼ 1

N
∑N

t S − S
�
�

�
�; (4)

where SIi is the storage intensity for storage component (S) (SnWS, SWS, SMS, and GWS), and n is the

total number of storage components, N is the number of months, and S is the long‐term mean.

3. Results
3.1. Variations in Groundwater Storage Anomalies From GRACE in Major Aquifers

GWS variation is the primary contributor to long‐term (trend + interannual) variability in GRACE TWSAs
in most aquifers, accounting for more than 50% in nine of the 14 aquifers, except those in the northwest
(Figure S3; Table S2). The dominance of GWS variability could be partly related to underestimation of
SMS variability in regions with thick soils because NLDAS SMS, used to estimate GWS, is restricted to the
upper 2 m. There is little variability in SMSAs among the NLDAS models (Figure S5). The contribution of
snow water storage (SnWS) to TWS was only important in the western United States, accounting for
~10–14% in the California Central Valley and Upper Colorado River Basin and ~30% in the northwest.
SWS contributed 13–29% of the variability in the Southwest, in the Central Valley (including reservoirs in
the Sacramento and San Joaquin/Tulare Basins), Upper Colorado (mostly Lake Powell), and Arizona
Alluvial Basins (Lake Mead) but much less elsewhere. The impact of Lake Mead on water storage may be
overestimated because it is located near the basin boundary, where storage signals are amplified
(Longuevergne et al., 2013). SMS generally accounted for ~16–45% of TWS variability, with no systematic
variation among aquifers.

Temporal variability in GWS is dominated by long‐term trends in the San Joaquin/Tulare Basins (53% of
total GWSA signal) and Central and Southern High Plains (65%), which dominate long‐term trends in
TWS in these basins (Figure 2; Table S2). Interannual variability in GWSs was highest in the Arizona
Alluvial Basins, NHP, Texas Gulf Coast, and Floridan aquifers (each ~50%). Annual and semiannual GWS
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contributions were lower than contributions from trends and interannual variability in a number of aquifers
(e.g., Central Valley and High Plains).

Temporal variations in GRACE GWSAs are similar to those of GRACE TWSAs, with correlation coefficients
(R) of 0.57 to 0.98 in most aquifers (Table S22). However, GWSA results are conditioned by accumulating
uncertainties in other modeled water‐budget components, such as snow, reservoirs, and soils, which are
important in the Columbia and Upper Colorado systems and in humid regions (Pennsylvanian and
Floridan aquifers).

Trends in GWSAs derived from GRACE were negative in the southwestern and south‐central United States,
totaling approximately −90 km3 over the past 15 yr (April 2002 to June 2017; trends based on Sen slopes;
Sen, 1968), ~2.5× the capacity of Lake Mead (~35 km3), the largest surface reservoir in the United States
(Figure 3; Tables 1 and S1). This depletion reflects GWS losses totaling −26 km3 in the Central Valley,
−7 km3 in the Arizona Alluvial Basins, −39 km3 in the Central and Southern High Plains, −6.4 km3 in
the Texas Edwards Trinity Plateau, and −11 km3 in the Texas Gulf Coast. There was almost no trend in
GRACE GWSAs in the Mississippi Embayment (−0.6 km3/15 yr). In contrast, trends in GRACE GWSAs
were slightly positive over the past 15 yr in aquifers in the northwest (Columbia Plateau and Snake River
Plain: 2–6 km3), north (~21 km3, NHP), and east (8–13 km3, Pennsylvanian and Floridan aquifers).
Decreasing GWSAs during the 15 yr GRACE period generally reflect responses to long‐term droughts as
shown in the cumulative precipitation anomalies (Figure 3; Table S21) and related irrigation pumpage in
California, Arizona, and Texas (Dieter et al., 2018). Both California and Texas have been subjected to
4–5 yr droughts in recent years with only partial recovery during wet periods, resulting in long‐term net
declines in GWSAs. GWSAs in the Arizona Alluvial Basins aquifers were maintained by two wet periods
(2005 and 2010); however, there was no significant water input after 2010 resulting in GWS loss.
Uncertainties in GWSAs were generally low in most aquifers and fairly uniform over time.

Although many aquifers are generally represented as a single system, for example, Central Valley and High
Plains (Konikow, 2013), there is substantial variability in GWSA trends within these aquifers. For example,
trends in GWSAs, when normalized by aquifer area and expressed as equivalent water height, were approxi-
mately two times greater in the southern (San Joaquin/Tulare Basins; −15 mm/yr) than in the northern
(Sacramento, SAC; −6.3 mm/yr) Central Valley; however, GWSAs in the two regions were highly correlated
(R = 0.85) (Table S22). Many studies emphasize GW depletion throughout the High Plains aquifer
(Konikow, 2013); however, GWS increased in the NHP (5.4 ± 0.1 mm/yr) but decreased markedly in the
combined Central and Southern High Plains (−12.6 ± 0.8 mm/yr), and GWSAs were poorly correlated
between the Northern and Central + Southern High Plains (R = −0.30) (Table S22).

3.2. Comparison Between GRACE‐Derived and In Situ Groundwater Storage Anomalies

Generally high correlations between GRACE derived GWSAs and in situ GWSAs for many aquifers suggest
that GRACE satellites track the dynamics of GWS changes in these aquifers (Figure 4; Table S26.1). The
reported storage coefficients or the effective storage coefficients (based on the relationship between
GWLAs and GRACE GWSAs) simply scale the GWL anomalies; therefore, the correlation coefficients
between GRACE GWSAs and in situ GWL anomalies or in situ GWSAs are the same. Poor correlations in
some aquifers may reflect uncertainties in GRACE GWSAs or uncertainties in generating the composite
hydrographs of GWLAs or both. The poorest correlations are found in regional aquifers dominated by low
amplitude GWSAs and low signal‐to‐noise ratio, low storage coefficients (<0.05), or confined GW conditions
(e.g., Columbia Plateau, Upper Colorado, Floridan, and Pennsylvanian aquifers).

Annual in situ GWSAs in unconfined and semiconfined aquifers (Edwards Trinity Plateau, High Plains,
Eastern Snake Plain aquifers, Central Valley and Arizona alluvial) were highly correlated with GRACE
GWSAs (R = 0.52–0.95) (Figure 4; Table S26.1). GWLAs from the unconfined portion of the Mississippi
Embayment and GRACE GWSAs were also highly correlated (R = 0.67). Aquifers with data for unconfined
and confined portions of the aquifers show good correspondence in the time series (Figure S8). The k cluster
analysis did not help distinguish different well groups with different depths in the Central Valley; therefore,
in the Central Valley, all GWL data were combined to compare with GRACE GWSAs (R = 0.81–0.95).

Cluster analysis identified a shallow group of wells (~900 wells) in the Columbia Plateau, likely unconfined,
that resulted in a much higher correlation with GRACE GWSAs (R = 0.62) relative to using the entire well
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network (R = 0.2) (Table S26.1). The Texas Gulf Coast and Coastal Lowlands include distinct unconfined
and confined well clusters with higher correlations between the shallow well clusters and GRACE
GWSAs (R = 0.59–0.68) than those based on the entire well network (R = 0.33–0.44).

Effective regional aquifer storage coefficients, estimated from the slope of GRACE GWSAs and GWLAs
(Equation 1; Table S26.1) are generally consistent with storage coefficients from previous studies. In the
Northern and Southern High Plains, these effective regional storage coefficients (0.07–0.10) are similar to
recent estimates in the Central High Plains (0.06–0.10) (Butler et al., 2016) but lower than previous modeled
estimates for the Northern and Southern High Plains (0.15–0.17) (Deeds & Jigmond, 2015; Peterson
et al., 2016). Lower effective storage coefficients for the Sacramento and San Joaquin/Tulare Basins
(0.06–0.27) than the range in modeled values (0.09–0.40) (Faunt, 2009) may result from variations in well
populations (specifically well depth and confining conditions) and degree of aquifer confinement. The med-
ian effective storage coefficient of the Arizona Alluvial Basins (0.10) is similar to the average specific yield of
the uppermost model layer (0.11) in the six GWmodels assessed for this study. In contrast, the median effec-
tive storage coefficient for the Eastern Snake Plain Aquifer (median 0.17) exceeds the modeled value (0.06),
which may be related to the low water storage changes increasing uncertainties in effective storage coeffi-
cients. In the Mississippi Embayment, the effective storage coefficient (0.23) is within the range of modeled
specific yields of the shallow unconfined Mississippi River Valley Alluvium (0.10–0.30). In contrast, the
effective storage coefficients are much lower in the U. Colorado, Floridan, and Pennsylvania aquifers, where
the correlation with GRACE‐GWSA is low. In the Snake and Coastal lowlands aquifers, GRACE‐GWSA is
more highly correlated with in situ GWSA (for the shallow wells and unconfined aquifers); however, the
reported storage coefficients from the models are much lower than the effective value. The reported values
for theses aquifers may represent the confined units where the change in storage is small and may result in
higher uncertainties in storage coefficients.

3.3. Comparison Between GRACE‐Derived Groundwater Storage Anomalies and Those From
Regional Groundwater Models

Trends andmagnitudes of GWSAs fromGRACEwere qualitatively compared with those from eight regional
GW models (Figures 5; Table S28). The current analysis focused on four models that extend to periods after
2011: Central Valley, Eastern Snake Plain, Southern High Plains, and Mississippi Embayment models, and
also the NHP that ends in 2008. There is relatively good correspondence between simulated and GRACE
GWSAs in the Central Valley with comparable overall trends, including similar increases in storage during
wet periods (2005–2006 and 2010–2011) (Faunt et al., 2016). The good agreement between GRACE GWSAs
and the model may be related in part to use of subsidence observations to constrain storage properties more
than other regional models. The main difference is the response to the 2007–2009 drought with modeled
GWS decline approximately two times that from GRACE GWSAs that may be related to lack of data on
SW deliveries for this model. GWSAs from the ESPAM and GRACE both show a significant declining trend
approximately −15 km3/15 yr). In the NHP, there is good agreement between simulated GWS depletion
(−20 km3) (Peterson et al., 2016) and that calculated from GRACE GWSAs (−18 km3) during the
2003–2006 drought period. The simulated decline in GWSA in the Southern High Plains through 2012
(Deeds & Jigmond, 2015) is approximately two times the decline from GRACE GWSAs, and the regional
model does not capture the increase in GWSAs during 2006–2008 related to elevated precipitation. There
is a large discrepancy between simulated and GRACE‐derived depletion in GWSAs in the Mississippi
Embayment, with approximately four times greater modeled GWS depletion (approximately −95 km3) over
the common 2002–2014 period than that derived from GRACE (−24 km3/12 yr). Possible causes of the dis-
crepancy include overestimation of specific yield or pumpage or underestimation of stream‐aquifer interac-
tions or recharge rates. Simulated specific yields for theMississippi River Valley Alluvium range from 0.10 to
0.30, but values are mostly 0.30, which is very large. Smaller values (<0.20) would improve the match with
GRACEGWSAs. Stream leakage may be extremely important in this system as 90% of the GW pumpage is in
the Mississippi River Valley Alluvium, which is likely well connected to the stream network. Greater simu-
lated stream leakage could replace storage loss because simulated storage loss is ~2 orders of magnitude less
than the flow rates of the large streams simulated in the model (mean annual flow >2.8 m3/s). In addition,
the dense network of smaller streams is not simulated; however, these streams may be an important water
source to the aquifer during periods of increased pumping after 1980. Finally, underestimation of simulated
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GW recharge, especially during wet periods, could also result in underestimation of the storage increases
seen in GRACE data. Current efforts to improve the regional model focus on the shallow Mississippi
River Valley Alluvial aquifer with enhanced hydrogeologic mapping based on airborne electromagnetic
surveys, a more detailed stream network with aquifer connectivity data, improved estimates of GW
pumpage, and revised recharge estimates, including those based on a soil water balance model (Killian
et al., 2019; Miller et al., 2018; Reitz et al., 2017; Westenbroek et al., 2010).

Additional models include the Columbia Plateau, which shows little change in modeled GWS, consistent
with GRACE estimates, and the Houston Area GWModel, which indicates slight GWS decline, also consis-
tent with GRACE (Figure S9). The Arizona models do not show the increase in storage through 2010 esti-
mated from GRACE. However, after 2011, both simulated and GRACE GWS loss rates are similar when
GW use in adjacent unmodeled basins with no capturable streams was included and assumed to be derived
from GWS; inclusion of the unsimulated basin withdrawals as derived from storage may slightly overesti-
mate storage loss but is a reasonable assumption especially during the extended drought after 2010.

In summary, GRACE GWS trends are similar or less than those from regional models for many aquifers,
with the largest discrepancy in the Mississippi Embayment model which shows approximately four times
greater depletion than that from GRACE. The GRACE GWS variability also seems to show more dynamic
response to climate variability than regional models do. The relatively good comparison for the Central
Valley, especially the increases in storage during wet periods, may be related to the additional constraints
on GW withdrawals that result from including subsidence measurements, SW gains/losses, and use of the

Figure 5. Annual GWSAs from GRACE (black line) and regional models (blue line) for the overlap period in (a) Eastern
Snake, (b) California Central Valley Hydrologic Model (CVHM), (c) Northern High Plains (NHP), (d) Southern High
Plains (SHP), and (e) Mississippi Embayment Regional Aquifer System (MERAS) groundwater models (GM). The
GRACE GWS trend is referenced to the overlap period with the model. The results for the Columbia Plateau, Arizona
Alluvial basins, and Texas Gulf Coast (Houston Area model) are shown in Figure S9 (Tables S27 and S28). The
Central valley results are based on Sacramento and San Joaquin systems polygon scaled by the ratio of the aquifer area to
the hydrological unit area. The results for the Mississippi Embayment in this figure differ from those in Figure 4
because GWS in Figures 3 and 4 is scaled by a factor of 2.6 (ratio of Mississippi Embayment to Mississippi River Valley
Alluvium) under the assumption that most of the storage changes occur in the alluvium.
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USGS Farm Process Package (Schmid &Hanson, 2009) to help constrain net GWwithdrawals (Faunt, 2009).
The analysis generally shows that regional GW models may benefit from including GRACE GWSAs as an
independent observation, especially where rates of recharge, storage change, pumpage, or stream‐aquifer
interactions are poorly constrained.

3.4. Comparison Between GRACE‐Derived Groundwater Storage Anomalies and Those From
Global Models

Global models evaluated include GHMs and LSMs. Trends in GWSAs were calculated for the commonmod-
eling period for GHMs and LSMs (April 2003 to December 2014; ~12 yr). The GHMs simulated GW depletion
totaling −172 to −186 km3 in southwestern aquifers (Central Valley and Arizona Alluvial Basins), Central
and Southern High Plains, and south‐central aquifers (Edwards Trinity Plateau and Texas Gulf Coast), about
a factor of 2.4× that from GRACE (−74 km3; 2003–2014). (Figure 6; Tables 1 and S1). The impact of HI in
GHM output was isolated by comparing GHM runs with and without HI (Figure S10). HI accounted for
~95% of the difference between GHM GWSA trends and those from GRACE. Similarly, in the NHP, the
GHM simulated depletions of approximately −39 to −43 km3 are almost entirely due to HI, whereas
GRACE data suggest a GWS increase of ~18 km3. Modeled GWS depletion for the Mississippi Embayment
range from −4.7 km3 (PCR‐GLOBWB‐2‐HI) to −74 km3 (WGHM‐2,2d HI) compared to −12 km3 from
GRACE. The large WGHMmodeled depletion is attributed almost entirely to HI. In addition to overestima-
tion of depletion, the GHMs do not track the dynamics of GWSAs relative to GRACE GWSAs. Some chal-
lenges in modeling elements of HI can result in large variations in GWS from GHMs (Döll et al., 2016;
Wada et al., 2017). Examples include (1) inapplicability of global algorithms for modeling human

Figure 6. Time series plots: (upper panels) the long‐term variability (interannual variability and linear trend) in GWSAs from GRACE (black line) and from
global hydrologic models (WGHM‐HI and PCR‐GLOBWB‐HI, HI, human intervention) (Tables S30–S33) and ensemble of land surface models
(NOAH‐MP, CLSM‐F2.5, and CLM‐5.0) (Tables S34–S36) in 14 major aquifers in the U.S. (Lower panels) Annual cumulative precipitation anomaly (CPA) as gray
bars. The U.S. base map shows GRACE GWS trends in km3 over the 15 yr monitoring period (2002–2017) (Table 1).
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management to specific aquifers; (2) uncertainty in water source (SW or GW) for different sectoral uses;
(3) challenges with modeling hydrological extremes (e.g., droughts and floods); (4) incorporating irrigation
return flow into GW; (5) lack of modeling land uses (e.g., vegetation) and climate interactions; and (5) uncer-
tainty in model inputs (e.g., climate and human use) and water availability.

The ensemble of the LSMs (CLM‐5.0, CLSM‐F2.5, and NOAH‐MP) matches GRACE GWSAs better than the
GHMs, which is surprising because most LSMs do not include SWS or HI (Figure 6; Tables 1 and S1). This
better match between trends in GRACE GWSAs and LSMs is not thought to be an artifact of the use of LSM
SMS to estimate GRACE GWSAs because long‐term trends in SMS from all LSMs and GHMs are negligible.
There is substantial variability among the LSMs, with some LSMs matching GRACE GWSAs in some basins
better than in others (Figure S11). For example, in the San Joaquin/Tulare Basins, the ensemble LSMs simu-
late−2.6 km3 relative to−11 km3 fromGRACE. In the NHP, the ensemble LSMs simulate a median increase
in GWSA of 9 km3 relative to 18 km3 from GRACE. In the Central and Southern High Plains, the ensemble
LSM GWSA trend is −15 km3 relative to GRACE GWSA of −31 km3. In the Mississippi Embayment, the
trend in GWSA from the LSMs is −3.6 km3 relative to −12 km3 from GRACE GWSAs.

4. Implications

Groundwater storage is extremely important for water resource assessments, but it has received limited con-
sideration in regional hydrologic studies because of the general lack of independent data for evaluation.
GRACE satellites can provide these independent data for large regional aquifers. Estimating GRACE
GWSAs relies on subtracting SMSAs, mostly derived from LSMs. LSMs may underestimate SMSAs in areas
of thick soils because NLDAS LSMs, used to estimate GWS in this study, only simulate SMS in the top 2 m of
the soil profile. However, LSMs may also overestimate SMS because most do not simulate other component
storages (SWS or GWS) but may implicitly include them in simulated SMS. Therefore, subtracting
LSM‐derived SMS from GRACE TWSA could underestimate or overestimate GWSAs. Unsimulated SMS
below the simulated 1–2 m depths could also contribute to interannual and decadal variability.

This study demonstrates the utility of aggregating GWL data for comparison with GRACE data and the sub-
sequent estimation of GWS at the aquifer scale. Issues affecting interpretation of results include clustering
data, impacts of pumpage, and degree of aquifer confinement. The gridding analysis of GWLs suggests that
the composite time series for the analyzed aquifers is independent of the grid resolutions tested, ranging
from 10–100 km (Figure S6; Table S25.1). Impacts of pumpage and lack of recovery from irrigation was man-
aged by focusing on winter periods and removing outliers, generally representing <10% of the well records.
Previous studies have limited comparison of GRACE data with GWL data in unconfined aquifers and seaso-
nal variations in GWLs (Li et al., 2019); however, limiting the GWL data set to wells with monthly data
would reduce the data set by up to 70%. Our analysis focuses on synoptic GWLmonitoring during the winter
when impacts of irrigation pumpage on GWLs are expected to be low. In addition, completion of wells in
unconfined, semiconfined, or confined aquifers is not reported for most aquifers.

Regional GWmodels are highly complex, with multiple data inputs, many parameters, and potentially high
construction costs. Many of these models are designed to improve understanding of aquifer system response
to pumping stress to enhance sustainable development. Assessment of these models has generally relied on
comparison with GWL data and baseflow to streams (Hill & Tiedeman, 2007). However, results of regional
models constrained by comparison with limited observations can be highly nonunique for many reasons,
including uncertainties in aquifer parameters (e.g., recharge rates, pumping rates, independent GWS change
estimates, and stream aquifer interactions) and limited observations. Also uncertain are GWS variations in
highly exploited aquifers, which are commonly estimated from the product of observed GWL change and
poorly defined aquifer storage coefficients. Uncertainties in each water budget component accumulate in
the GWS term because it is normally unmeasured and often the most uncertain term in the water budget
equation. Unfortunately, current parameter estimation methods for models often indicate that the aquifer
storage coefficient is not a highly sensitive parameter, resulting in little interest in better definition of this
parameter and follow‐on studies that focus on other uncertain parameters. Improved definition of aquifer
storage coefficients should help reduce model nonuniqueness despite the greater model sensitivity to other
parameters. Butler et al. (2020) recognized the need for improved storage coefficients in the Central High
Plains and developed a unique approach to the problem using detailed water budget records and stable
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climate forcing and recharge. Similarly, observations of GWSAs from GRACE, ground‐based gravity moni-
toring, weighing lysimeters, and recently developed seismic methods provide important tools to reduce
uncertainty in models that have large storage changes. Flow between aquifers and streams is another water
budget component that is difficult to observe and may be poorly quantified especially for systems with large
streams, such as theMississippi River where rates of stream‐aquifer interactions may be far less than stream-
flow or even less than streamflow uncertainties. Because of these many source of model uncertainty, many
regional models may oversimplify aspects of the systems, as is done, for example, with the use of constant
recharge rates (Hunt et al., 2007) resulting in underestimation of GWS dynamics. While the current compar-
isons are generally qualitative because of limited overlap periods with many regional models, results suggest
there is potential value in using GRACE data to better constrain regional model calibration. For example,
large discrepancies between GRACE GWSAs and regional model results for the Mississippi Embayment
are well beyond the uncertainties in GRACE GWSAs and highlight the need to conduct additional studies
to better constrain the results.

Large discrepancies between GRACE‐derived GWSAs and those from GHMs (PCR‐GLOBWB and WGHM)
reflect uncertainties in simulating HI in highly impacted aquifers using general rules related to sourcing
water (SW and GW), volumes withdrawn and consumed, and irrigation (McDonald et al., 2014; Siebert
et al., 2013). These GHMs also underestimate the dynamics in GWS relative to GRACE. While many of
the LSMs capture GWS dynamics, some may overestimate natural GW depletion considering that HI is
not included in these models. Incorporating GW abstraction and dynamic irrigation schemes in LSMs
(e.g., NOAH‐MP and HiGW‐MAT) help to match GRACE GWS at a coarse resolution; however, it becomes
challenging for finer resolution and small aquifers due to lack of representation of the subsurface hydrology
in these models (Nie et al., 2019; Pokhrel et al., 2015). Some previous studies attribute discrepancies between
GRACE and LSMs to lack of HI; however, the GHMs, which include HI, do not perform better than the
LSMs. Hence, more emphasis is required to quantify abstractions and improve the GHMs in such intensely
impacted regions.

GRACE data highlight the value of GWSAs for understanding water resources. One of the primary disadvan-
tages of the satellite data is the low spatial resolution. However, the GRACE data have been shown here to
have potential value for regional GW model calibration and could be complemented with ground‐based
gravity monitoring to observe spatial variations in water storage at much higher resolution than GRACE,
as shown in the Arizona Alluvial Basins aquifer studies (Pool, 2008; Pool & Anderson, 2008) and other
smaller‐scale studies (Kennedy, 2016; Pool & Schmidt, 1997).

5. Conclusions

GRACE satellites provide an independent data set of TWSAs and estimated GWSAs in major aquifers in the
United States to better understand spatiotemporal variability in water storage of individual aquifers.
Generally good agreement between GRACE GWSAs and GWLAs for most aquifers indicates that both are
tracking the dynamics of GWS, which increases during wet periods and decreases during drought. Both data
sets show long‐term declining trends in the southwestern and south‐central United States (California
Central Valley, Arizona Alluvial Basins, Central and Southern High Plains, Edwards Trinity Plateau, and
Texas Gulf Coast), totaling approximately −90 km3 over the 15 yr period (2002–2017). GWS in most other
aquifers is stable or increasing by up to 21 km3 in the NHP. Good correspondence between GRACE
GWSAs and GWLAs is shown by correlation coefficients ranging from 0.52 to 0.95 in most systems, which
increases confidence in using GRACE data to evaluate regional GWSAs. Effective storage coefficients
derived from GWL and GRACE GWSA data are generally consistent with reported storage coefficients in
the uppermost unconfined parts of aquifer systems.

Qualitative comparison of GRACE GWSAs and GWSAs from eight regional GW models shows generally
good correspondence for the regional aquifers with the most GW use (Central Valley, High Plains, and
Arizona Alluvial Basins aquifers). However, modeled GW depletion in the Mississippi Embayment is
approximately four times greater than that estimated fromGRACE, greatly exceeding GRACE uncertainties.
This discrepancy may reflect uncertainties in modeled storage parameters, overestimated pumpage, under-
estimated stream capture, and/or underestimated GW recharge.
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GHMs overestimate depletion in major aquifers, such as the Central Valley (GHM = −30 to −72 km3/12 yr;
GRACE = −15 km3/12 yr), NHP (GHM = −39 to −43 km3/12 yr; GRACE = 18 km3/12 yr), Central and
Southern High Plains (GHM = −90 to −127 km3/12 yr; GRACE = −31 km3/12 yr), and Mississippi
Embayment (GHM = −5 to −74 km3/12 yr; GRACE = −12 km3/12 yr). This overestimation can mostly
be accounted for by missing elements in modeling the HI. In contrast, GWSAs from global LSMs agree better
with GRACE than the GHMs; however, some of the modeled depletion may be for the wrong reason as these
models do not include HI. There is substantial variability between the GHMs and also among the LSMs, sug-
gesting high levels of model uncertainties.

This study highlights the value of water storage data in assessing GW resources and demonstrates that incor-
porating GWS into regional and global models would help to reduce uncertainties. Each source of data has
uncertainties; however, combining remote sensing, global and regional modeling, and ground‐based moni-
toring should help to reduce conceptual and numerical model uncertainties in GWS, which should also help
constrain recharge rates and stream‐aquifer interactions. This type of analysis substantially advances our
understanding of large‐scale aquifer systems and raises new questions for further study.

Data Availability Statement

Data supporting this research are available online without restrictions for GRACE, NLDAS models, in situ
reservoirs, in situ groundwater, SNODAS, and global hydrological models (supporting information).
The shape file of major aquifers in the United States and results of this study are available at online
(https://doi.org/10.18738/T8/JSUIJT).
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